United States Patent

US009471582B2

(12) 10) Patent No.: US 9,471,582 B2
Gunda et al. 45) Date of Patent: Oct. 18, 2016
(54) OPTIMIZED PRE-FETCH ORDERING USING 2007/0203940 A1* 82007 Wang GOG6F 1%370/?8431
DE-DUPLICATION INFORMATION TO
2008/0244172 Al 10/2008 Kano
ENHANCE NETWORK PERFORMANCE 2008/0281908 Al 11/2008 McCanne et al.
(71) Applicant: International Business Machines %8??;83%‘9‘;2 ﬁ} . légg(ﬁ %a}’ﬂkOVSk}’ et alG06F 1730150
: ofano
Corporation, Armonk, NY (US) 2071692
2011/0238775 Al 9/2011 Wu et al.
(72) Tnventors: Kalyan C. Gunda, Bangalore (IN); 2011/0258161 Al 10/2011 Constantinescu et al.
Mukti Jain, Pune (IN); Sandeep R.
Patil, Pune (IN); Riyazahamad M. FOREIGN PATENT DOCUMENTS
Shiraguppi, Pune (IN)
EP 2222025 B1 2/2012
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
. “Data deduplication”, <http://en.wikipedia.org/w/index.
(*) Notice: SubJeCt, to any dlSCIalmer{ the term of this php?title=Data_deduplication&printable=yes>, Printed Jan. 15,
patent is extended or adjusted under 35 2013.
U.S.C. 154(b) by 647 days. Griffioen et al, “Automatic Prefetching in a WAN™, Technical
Report #CS243-93, Appeared in the IEEE Workshop on Advances
. in Parallel and Distributed Systems, Oct. 1993.
(21) Appl. No.: 13/856,478 Griffioen et al., “Reducing File System Latency using a Predictive
. Approach”, <http://protocols.netlab.uky.edu/~grifl/papers/
(22) Filed: Apr. 4, 2013 usenix94.pdf> Printed Jan. 14, 2013.
“WAN Deduplication: Getting More by Sending Less”, Copyright
(65) Prior Publication Data 2008 Silver Peak Systems, Inc., White Paper, <www.silver-peak.
com>.
“WAN Optimization Technologies in EMC Symmetrix Replication
US 2014/0304268 Al Oct. 9, 2014 Environments”, White Paper, Jan. 2009, pp. 1-11, Copyright 2009
EMC Corporation.
(51) Imt. CL Svobodova, “File Servers for Network-Based Distributed Systems”,
GOG6F 17/30 (2006.01) Computing Surveys, vol. 16, No. 4, Dec. 1984, pp. 353-398.
(52) US. CL * cited b .
(012 G GO6F 17/30132 (2013.01) cited by examiner
(58) Tield of Classification Search Primary Examiner — Apu Mofiz
CPC ooovocerereseseerenss s GOGF 17/30132 Assistant Examiner — Chelcie Daye
USPC oo 707/738, 692 (74) Attorney, Agent, or Firm — Isaac J. Goodshaw
See application file for complete search history. (57) ABSTRACT
. A computer determines a degree of information duplication
(56) References Cited between at least two files included in an original pre-fetch

U.S. PATENT DOCUMENTS

6,687,786 B1* 2/2004 Wongccc..... GOG6F 12/023
365/49.17
7,523,098 B2 4/2009 Hirsch et al.
8,078,593 Bl 12/2011 Ramarao
8,209,291 Bl 6/2012 Ma et al.
8,442,956 B2* 5/2013 Tofano GOG6F 17/30489
707/692
W~

list. The computer generates a re-ordered pre-fetch list by
re-ordering the files included in the original pre-fetch list.
The re-ordering is based, at least in part, on the degree of
information duplication between the two files included in the
original pre-fetch list. The files included in the original
pre-fetch list are re-ordered by grouping files containing
higher degrees of duplicate information closer together in
the re-ordered pre-fetch list.

14 Claims, 5 Drawing Sheets

GENERATE FILE FOR
PHYSICAL BLOCK SET

U.S. Patent

130

Oct. 18, 2016

Sheet 1 of 5 US 9,471,582 B2

110

¢

COMPUTING DEVICE

LIST ORDERING -
PROGRAM 115

PHYSICAL BLOCK SET | |
GENERATOR —116

WEIGHTED GRAPH 117
GENERATOR

ORIGINAL DATA —t+— 118

120

¢

COMPUTING DEVICE

API INTERFACE ~~}-122

INITIAL LIST 125

COPIED DATA —1-128

FIG. 1

U.S. Patent Oct. 18, 2016

200
\S\

Sheet 2 of 5

US 9,471,582 B2

RECEIVE PRE-FETCH FILE LIST

—— 205

»‘

IDENTIFY FILE(S)

'

——210

GENERATE VIRTUAL BLOCK LIST

~—215

'

QUERY DE-DUPLICATION ENGINE

—220

NO

'

ADD ALL UNIQUE
BLOCKS TO TABLE

ALL FILES
PROCESSED ?

GENERATE FILE FOR
PHYSICAL BLOCK SET

~— 225

230

—— 235

FIG. 2

U.S. Patent

300
\\

Oct. 18, 2016 Sheet 3 of 5

(_ START)

o

RETRIEVE BLOCK LIST(S) FOR FILE(S)

US 9,471,582 B2

CREATE GRAPH WITH NODES -~ 305

~—310

IDENTIFY AND SUM COMMON BLOCKS

~— 320

IS SUM YES

NON-ZERO ?

ADD EDGE

WITH WEIGHT |~ 330

335

NO ALL FILES

ANALYZED ?

GENERATE FILE FOR

?V
END

FIG. 3

PHYSICAL BLOCK SET |~ 340

U.S. Patent Oct. 18, 2016 Sheet 4 of 5 US 9,471,582 B2

(_START)

CREATE EMPTY RE-ORDERED | 405

400
NN PRE-FETCHLIST

DETERMINE SUB-TREE WEIGHT f~—410

RANK SUB-TREE(S) BY WEIGHT | 415

CREATE SUB-LIST |~ 420

Y

IDENTIFY EDGE OR NODE FROM
SUB-TREE WITH MOST WEIGHT |~ 425
AND ADD TO SUB-LIST

430

NO ALL
EDGES AND NODES

BOTH NODES
PROCESSED ?

ADD SUB-LISTTOEMPTY |
RE-ORDERED PRE-FETCH LIST 445

)
SAVE RE-ORDERED PRE-FETCH LIST |~ 450

END
FIG. 4

US 9,471,582 B2

Sheet 5 of 5

Oct. 18, 2016

U.S. Patent

G 9Old
(8)3aniAaa
TVYNY3LX3
b\
815
L1INN SNOILYOINNIWINOD @m_om“__m_m_hz_ AVdSIa
’
0LG N S
— ZLs 0zs
8zl N\-20S
ser| [0 9}
— — (S)40SS300Yd
A1 EID dHOVO <
T ED ¥0S
NV
JOVHOLS N
IN3L1SISH3d
| IN31SISH3d | e
I AHOWIW
805 /
905

US 9,471,582 B2

1
OPTIMIZED PRE-FETCH ORDERING USING
DE-DUPLICATION INFORMATION TO
ENHANCE NETWORK PERFORMANCE

FIELD OF THE INVENTION

The present invention relates generally to the field of
network performance, and more particularly to enhancing
network performance by optimizing pre-fetch ordering.

BACKGROUND OF THE INVENTION

Geographically distributed entities, such as a business
with multiple local offices in different geographic locations,
frequently desire to maintain a logically unified proprietary
network that is accessible by all of the geographically
distributed entities. To accomplish this, a wide area network
(WAN) may be used to link the different locations.

Information technology (IT) managers within geographi-
cally distributed entities face the conflicting requirements of
keeping costs in check while providing users with new and
faster applications. This conflict is most acute on the WAN,
where costs can be high and obtaining applications to
perform well is hampered by limited bandwidth and high
latency.

SUMMARY

A computer determines a degree of information duplica-
tion between at least two files included in an original
pre-fetch list. The computer generates a re-ordered pre-fetch
list by re-ordering the files included in the original pre-fetch
list. The re-ordering is based, at least in part, on the degree
of information duplication between the two files included in
the original pre-fetch list. The files included in the original
pre-fetch list are re-ordered by grouping files containing
higher degrees of duplicate information closer together in
the re-ordered pre-fetch list.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating a data
trafficking environment, in accordance with an embodiment
of the present invention.

FIG. 2 illustrates operational steps of a physical block set
generator, operating on a computing device within the data
trafficking environment of FIG. 1, in accordance with an
exemplary embodiment.

FIG. 3 illustrates operational steps of a weighted graph
generator, operating on a computing device within the data
trafficking environment of FIG. 1, in accordance with an
exemplary embodiment.

FIG. 4 illustrates operational steps of a list reordering
program, operating on a computing device within the data
trafficking environment of FIG. 1, in accordance with an
exemplary embodiment.

FIG. 5 depicts a block diagram of components of the
computing device executing the list reordering program, in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

In computing, data de-duplication is a specialized data
compression technique for eliminating duplicate copies of
repeating data. Related and somewhat synonymous terms
are intelligent (data) compression and single-instance (data)

10

15

20

25

30

35

40

45

50

55

60

2

storage. The technique is used to improve storage utilization
and can also be applied to network data transfers to reduce
the number of bytes that must be sent. In the de-duplication
process, unique chunks of data, or byte patterns, are iden-
tified and stored during a process of analysis. As the analysis
continues, other chunks are compared to the stored copy and
whenever a match occurs, the redundant chunk is replaced
with a small reference that points to the stored chunk. Given
that the same byte pattern may occur dozens, hundreds, or
even thousands of times (the match frequency is dependent
on the chunk size), the amount of data that must be stored
or transferred can be greatly reduced.

This type of de-duplication is different from that per-
formed by standard file-compression tools identify short
repeated substrings inside individual files. The goal of
storage-based data de-duplication is to inspect large volumes
of data and identify large sections, such as entire files or
large sections of files, which are identical, in order to store
only one copy. The copy may be additionally compressed by
single-file compression techniques.

One of the most common forms of data de-duplication
implementations works by comparing chunks of data to
detect duplicates. For that to happen, each chunk of data is
assigned an identification, calculated by the software, typi-
cally using cryptographic hash functions. In many imple-
mentations, the assumption is made that if the identification
is identical, the data is identical, even though this cannot be
true in all cases due.

Other implementations do not assume that two blocks of
data with the same identifier are identical, but actually verify
that data with the same identification is identical. If the
software either assumes that a given identification already
exists in the de-duplication namespace or actually verifies
the identity of the two blocks of data, depending on the
implementation, then the software will replace that duplicate
chunk with a link. Once the data has been de-duplicated,
upon read back of the file, wherever a link is found, the
system simply replaces that link with the referenced data
chunk.

A clustered file system is a file system which is shared by
being simultaneously mounted on multiple servers. Many
computer clusters use clustered file systems. Servers are
often underpinned by a clustered file system to control the
complexity of the underlying storage environment used by
the servers, which typically increases as servers are added to
the computer cluster.

A shared disk file system uses a storage area network
(SAN) to provide direct disk access from multiple comput-
ers at the block level. Translation from file-level operations,
which applications use, to block-level operations used by the
SAN must take place on the client node. A shared disk file
system, a common type of clustered file system, adds a
mechanism for concurrency control that gives a consistent
view of the file system which can be serialized. The serial-
ization of the file system reduces data corruption and unin-
tended data loss even when multiple clients try to access the
same files at the same time. Often shared disk file systems
further employ a data fencing mechanism to prevent data
corruption in case of node failures.

There are different architectural approaches to a shared
disk file system since the underlying storage area network
might use any of a number of known block-level protocols.
Some shared disk file systems distribute file information
across all the servers in a cluster (fully distributed). Other
shared disk file systems utilize a centralized metadata server.
Both approaches achieve the same result, i.e., enabling all
servers to access all the data on a shared storage device.

US 9,471,582 B2

3

In common with typical cluster file systems, a General
Parallel File System (GPFS) is a high-performance shared-
disk clustered file system. A GPFS provides concurrent,
relatively high-speed, file access to applications executing
on multiple nodes of clusters. In addition to providing file
system storage capabilities, GPFS provides tools for man-
agement and administration of the GPFS cluster, and allows
for shared access to file systems from remote GPFS clusters.

GPFS introduced the concept of file partitioning to
accommodate the needs of parallel applications that run on
high-performance multi-computers with parallel I/O subsys-
tems. With partitioning, a file is not a sequence of bytes, but
rather multiple disjoint sequences that may be accessed in
parallel. The partitioning is such that it abstracts away the
number and type of 1/O nodes hosting the file system, and
the partitioning allows a variety of logical partitioned views
of files, regardless of the physical distribution of data within
the I/O nodes. The disjoint sequences are arranged to
correspond to individual processes of a parallel application,
allowing for improved scalability.

GPEFS has been successtfully deployed for many commer-
cial applications including: digital media, grid analytics and
scalable file service. GPFS provides high performance by
allowing data to be accessed over multiple computers at
once. Many existing file systems are designed for a single
server environment, and adding more file servers does not
improve performance. In general, GPFS provides higher
input/output performance by “striping” blocks of data from
individual files over multiple disks, and reading and writing
these blocks in parallel.

There are many approaches to help improve performance
over the WAN portion of a network. These solutions may be
based on a number of technologies, including data compres-
sion, data caching, application-specific acceleration, policy-
based bandwidth allocation, and data pre-fetching.

Data pre-fetching, in particular, may be used to reduce the
perceived latency (response time) of data being accessed
over a WAN. In general, the phrase data pre-fetching may
include requesting and retrieving data in advance of an
actual user or application-level request. One problem
encountered when pre-fetching data is the determination of
what data to pre-fetch, as well as when and how frequently
to perform the pre-fetching operation. Pre-fetching unnec-
essary data can result in wasted resources, while pre-fetch-
ing too infrequently can result in decreased performance for
system users.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer-readable medium(s) having computer
readable program code/instructions embodied thereon.

Any combination of computer-readable media may be
utilized. Computer-readable media may be a computer-
readable signal medium or a computer-readable storage
medium. A computer-readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, or device, or any suitable combination of the forego-
ing. More specific examples (a non-exhaustive list) of a
computer-readable storage medium would include the fol-

10

15

20

25

30

35

40

45

50

55

60

65

4

lowing: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer-readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer-readable signal medium may be any computer-
readable medium that is not a computer-readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java™, Smalltalk, C++ or the like and conventional proce-
dural programming languages, such as the “C” program-
ming language or similar programming languages. The
program code may execute entirely on a user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer-readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer-readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

US 9,471,582 B2

5

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer-imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The present invention will now be described in detail with
reference to the Figures. The exemplary embodiments
described herein are typically adapted for use in a GPFS
cluster file system. However, this is not to be interpreted as
a limitation. Other embodiments can be adapted for integra-
tion and use by different types of file systems.

FIG. 1 is a functional block diagram illustrating a data
trafficking environment, generally designated 100, in accor-
dance with one embodiment of the present invention. Data
trafficking environment 100 includes computing device 110
and computing device 120.

In this exemplary embodiment, computing device 110 is
connected to computing device 120 through network 130.
Computing device 110 includes list reordering program 115,
physical block set generator 116, weighted graph generator
117, and original data 118. Computing device 120 includes
application programming interface (API) interface 122, ini-
tial list 125, and copied data 128. In exemplary embodi-
ments, computing device 110 and computing device 120
may be included in General Parallel File System (GPFS)
(not shown), which is included in data trafficking environ-
ment 100.

In various embodiments of the present invention, com-
puting device 110 and computing device 120 are computing
devices that can be standalone devices, servers, laptop
computers, tablet computers, netbook computers, personal
computers (PCs), or desktop computers. In another embodi-
ment, computing device 110 and computing device 120
represent computing systems utilizing clustered computers
and components to act as a single pool of seamless
resources. In general, computing device 110 can be any
computing device or a combination of devices with access to
list reordering program 115, physical block set generator
116, weighted graph generator 117, and original data 118,
and is capable of running list reordering program 115. In
general, computing device 120 can be any computing device
or a combination of devices with access to API interface
122, initial list 125, and copied data 128, and is capable of
running API interface 122. Computing device 110 and
computing device 120 may include internal and external
hardware components, as depicted and described in further
detail with respect to FIG. 5.

In this exemplary embodiment, list reordering program
115, physical block set generator 116, weighted graph gen-
erator 117, and original data 118 are stored on computing
device 110. However, in other embodiments, list reordering
program 115, physical block set generator 116, and weighted
graph generator 117 may be stored externally and accessed
through a communication network, such as network 130.
Network 130 can be, for example, a local area network
(LAN), a wide area network (WAN) such as the Internet, or
a combination of the two, and may include wired, wireless,
fiber optic or any other connection known in the art. In
general, network 130 can be any combination of connections
and protocols that will support communications between
computing device 110 and list reordering program 115,
physical block set generator 116, weighted graph generator

30

35

40

45

55

6

117, original data 118, and computing device 120 in accor-
dance with a desired embodiment of the present invention.

Computing device 110 is, in exemplary embodiments, a
home site included in a GPFS cluster file system. A home
site is the source of an original data that is sent to other
computing devices in response to a request for the original
data, which is included in original data 118. Original data
118 includes, in general, original data, such as original
pre-fetch file lists, virtual block lists,-and physical block
sets, that are used by other programs, as well as other data
such as re-ordered pre-fetch lists, and other data used by list
reordering program 115, physical block set generator 116,
and weighted graph generator 117.

Computing device 120 is, in exemplary embodiments, a
cache site included in a GPFS cluster file system. Computing
device 120 caches data locally in persistent data storage, i.e.,
saves the data as part of copied data 128, for use by other
programs, for example, client applications. The other pro-
grams, or client applications, can be included in computing
device 120 but are typically located externally on other
computing devices that are in contact with computing device
120 via network 130. If a program, such as a client appli-
cation, is requesting access to a file for the first time, then the
file is fetched from the home site, e.g., computing device
110, and copied to GPFS file system at the cache site.
Subsequent requests for the file are served from local cache
site, thereby reducing the need for additional WAN band-
width to transfer the same data repeatedly.

In exemplary embodiments, computing device 120
includes API interface 122. API interface 122 is an appli-
cation programming interface (API) program that deter-
mines which requested files have overlaps. Since de-dupli-
cation is performed only on computing device 110,
computing device 120 uses API interface 122 to re-order the
pre-fetch list based on which requested files have overlaps.
API interface 122 eliminates the need to perform de-dupli-
cation on the both the home site, e.g., computing device 110,
and the cache site, e.g., computing device 120, for the same
requested file.

In exemplary embodiments, in general, list reordering
program 115 receives an initial list of requested files, which
are included in initial list 125, from computing device 120.
In response, list reordering program 115 activates physical
block set generator 116 and weighted graph generator 117.
Physical block set generator 116 generates a physical block
set, and weighted graph generator 117 generates a weighted
graph, for the blocks of data included in the requested files.
The physical block set and weighted graph are utilized by
list reordering program 115 to generate a re-ordered pre-
fetch list for the requested files. The re-ordered pre-fetch list
is then passed to computing device 120 which then reads the
files following the order indicated by the re-ordered pre-
fetch list.

A more detailed description of how list reordering pro-
gram 115 re-orders a pre-fetch list is now described, in
accordance with an exemplary embodiment. In general, list
reordering program 115 re-orders the files included in an
original pre-fetch list by grouping files that contain higher
degrees of duplicate information closer together in a re-
ordered pre-fetch list. After receiving a pre-fetch file list, list
reordering program 115 determines a list of virtual blocks
that are associated with the requested file. List reordering
program 115 queries an integral de-duplication engine, i.e.,
the de-duplication engine is included in list reordering
program 115, to generate a list of associated unique physical
blocks. These associated unique physical blocks are added to
a block set associated with the file. The block set for each file

US 9,471,582 B2

7

is compared with other file block sets, included in the
pre-fetch list, to identify sets of common blocks. List
reordering program 115 determines the degree of separation
between at least two files included in the original pre-fetch
list, i.e., number of files separating two given files included
in the original pre-fetch list, and re-orders the pre-fetch file
list to minimize the sending of duplicate physical blocks. In
certain embodiments, the de-duplication engine is not inte-
gral to, but is accessible by, list reordering program 115.

A weighted graph is generated, by weighted graph gen-
erator 117, with a node representing a given file and the
edges extending from the node representing the blocks
shared with other files. The weight of an edge is assigned
based on the number of common blocks shared among given
pair of files. In the case of connected sub-trees, weight is
assigned which is sum of weights of all edges in the sub-tree.
For each sub-tree, ordered sub lists are created considering
nodes in descending order of weight of edges associate with
the given node. A new pre-fetch list is created by list
reordering program 115 merging all the ordered sub-lists. In
general, sub-lists are considered in the descending order of
weights of their associated sub-trees while adding to a
re-ordered pre-fetch list. The re-ordered pre-fetch list is
passed to the cache site, computing device 120, which can
read files in the specified file sequence indicated by the
re-ordered pre-fetch list.

FIG. 2 is a flow chart, 200, illustrating the operational
steps utilized physical block set generator 116 to generate a
physical block set for the requested files to be transferred, in
accordance with an exemplary embodiment.

In an exemplary embodiment, physical block set genera-
tor 116 receives an original pre-fetch file list in step 205.
Typically, the pre-fetch file list is sent from computing
device 120 to computing device 110, which passes the
original pre-fetch file list to physical block set generator 116
and saves a copy of the original pre-fetch file list to original
data 118. In other embodiments, physical block set generator
116 can generate the original pre-fetch file list after receiv-
ing a set of criteria from the cache site. The criteria can
include information such as, the file names, and preferences
for sending the files.

In an exemplary embodiment, in step 210, physical block
set generator 116 identifies the files included in the original
pre-fetch file list and then generates a virtual block list in
step 215, which is saved as part of original data 118. The
virtual block list is a list of the pieces of data, i.e., virtual
blocks, that are included in the files included in the original
pre-fetch file list. Physical block set generator 116 queries
the de-duplication engine, included in list reordering pro-
gram 115, to retrieve the physical blocks associated with
each virtual block, in step 220. Then, in step 225, physical
block set generator 116 populates a physical block set with
all the unique physical blocks that were identified in step
220. In other words, only one copy of each physical block
is added to the physical block set, even if the physical block
exists in multiple files. For example, if files A and B both
include virtual block “PT1567¢”, then only one copy of the
physical block corresponding to virtual block “PT1567¢” is
added to the physical block set.

In an exemplary embodiment, in decision step 230, physi-
cal block set generator 116 determines if all the files have
been processed, i.e., all the virtual and physical blocks have
been processed for each file. If all the files have not been
processed (decision step 230, no branch), i.e., the physical
blocks included in each file exist have not been added to the
physical block set, then physical block set generator 116
returns to step 210. If all the files have been processed

10

15

20

25

30

35

40

45

50

55

60

65

8

(decision step 230, yes branch), i.e., the physical blocks
included in each file exist have been added to the physical
block set, then physical block set generator 116 proceeds to
step 235. In step 235, physical block set generator 116
generates a file that includes the physical block set and saves
the file as part of original data 118.

FIG. 3 is a flow chart, 300, illustrating the operational
steps utilized by weighted graph generator 117 to generate a
weighted graph based on common blocks included in the
requested files to be transferred, in accordance with an
exemplary embodiment.

In an exemplary embodiment, weighted graph generator
117 begins creating a weighted graph by adding a node to the
graph for each file, in step 305. In step 310, weighted graph
generator 117 retrieves the virtual block list for each file
from original data 118. Weighted graph generator 117 iden-
tifies the common blocks, i.e., virtual blocks included in
both files, included in each file and sums them to create a
weight between two respective files, in step 320. For
example, files A and B both include virtual blocks
“XY8904mH”, “GT6754sR”, and “WS3456dS”, which
each carry a weight of 1. Therefore, weighted graph gen-
erator 117 determines that the sum of the “weights™ of the
common virtual blocks is 3. The weight of three represents
a numerical value applied the degree of overlap, or number
of virtual blocks that are common, between the two files.

In an exemplary embodiment, weighted graph generator
117 determines if the sum, from step 320, of the virtual
blocks is a non-zero value, in decision step 325. If the sum
of the virtual blocks is a non-zero value, i.e., a number
greater than zero, (decision step 325, yes branch), then
weighted graph generator 117 proceeds to step 330. In step
330, weighted graph generator 117 adds an edge to the
weighted graph that connects the two files. The edge has an
assigned weight that corresponds to the sum value generated
in step 320. After the edges have been added to connect the
files, weighted graph generator 117 proceeds to decision step
335.

If the sum of the virtual blocks is not a non-zero value,
i.e., is equal to zero, (decision step 325, no branch), then
weighted graph generator 117 proceeds to decision step 335.
In decision step 335, weighted graph generator 117 deter-
mines if all the virtual blocks included in files, which are
included as part of original data 118, have been analyzed. In
other words, weighted graph generator 117 determines if all
the virtual blocks, included in all the files, have been
analyzed i.e., had edges assigned and added to the weighted
graph where applicable. If there are still files, i.e. virtual
blocks, that have not been analyzed (decision step 335, no
branch), then weighted graph generator 117 returns to step
310. If all the virtual blocks that have been analyzed
(decision step 335, yes branch), then weighted graph gen-
erator 117 proceeds to step 340. In step 340, weighted graph
generator 117 generates a file for the physical block set that
includes the weighted graph and saves the file as part of
original data 118.

FIG. 4 is a flow chart, 400, illustrating the operational
steps utilized by list reordering program 115 to generate a
re-ordered pre-fetch list for the requested files to be trans-
ferred, in accordance with an exemplary embodiment.

In an exemplary embodiment, list reordering program 115
creates an empty re-ordered pre-fetch list in step 405. Then
list reordering program 115 retrieves the weighted graph
from original data 118 and determines a weight of the sub
tree(s) in step 410. In other words, list reordering program
115 sums the edges connected to each node (i.e., each file)

US 9,471,582 B2

9

to determine the weight for that sub-tree. List reordering
program 115 ranks the sub-tree(s) according to descending
order of weight, in step 415.

In an exemplary embodiment, list reordering program 115
then creates an empty sub list for each sub-tree, in step 420.
To fill an empty sub list for a sub tree, in step 425, list
reordering program 115 adds the node with the highest rank
to the sub list followed by the connected node(s), i.e., nodes
that share an edge with the added node, according to highest
edge weight. For example, a sub-tree for node A includes
nodes B-E, which are connected to node A via weighted
edges. The sub-tree for node A has the highest weight of all
the sub-trees and node A is connected to node D with an edge
that has the highest weight of all edges connected to node A.
Therefore, list reordering program 115 adds node A into the
first slot of the sub list and node D into the second slot. The
remaining nodes, i.e. nodes B, C, and E, are then added to
the sub list according their associated edge weight, i.e., the
node with the highest associated edge weight to node A
being added first. As such, if edge A-B has a weight of 4,
edge A-C has a weight of 3, and edge A-E has a weight of
6, then the slots of the sub list would be filled as follows, A,
D, E, B, and C.

In an exemplary embodiment, list reordering program 115
determines if all the edges and nodes included in the
weighted graph have been processed, in decision step 430.
If all the edges and nodes have been processed (decision step
430, yes branch) then list reordering program 115 proceeds
to step 445. If there are any edges or nodes that have not
been processed (decision step 430, no branch), then list
reordering program 115 proceeds to decision step 435.

In an exemplary embodiment, list reordering program 115
determines if the unprocessed item is an edge, in decision
step 435. If the unprocessed item is not an edge (decision
step 435, no branch), i.e., the unprocessed item is a node,
then list reordering program 115 returns to step 425. If the
unprocessed item is an edge (decision step 435, yes branch),
then list reordering program 115 determines if both of the
nodes connected by the edge have both been processed, in
decision step 440. If either of the nodes have not been
processed (decision step 440, no branch), then list reordering
program 115 returns to step 425. If both nodes have been
processed (decision step 440, yes branch), then list reorder-
ing program 115 proceeds to step 445.

In an exemplary embodiment, in step 445, list reordering
program 115 adds the sub lists to the empty re-ordered
pre-fetch list. Then list reordering program 115 saves a copy
of the filled re-ordered pre-fetch list as part of original data
118, in step 450.

In some embodiments, the re-ordering of data writes can
also be performed using a substantially similar approach to
that of re-ordering of a pre-fetch list (i.e., reads). Based on
de-duplication information the blocks in a write request can
be re-ordered as seen in the read request, e.g. the generation
of a re-ordered pre-fetch list.

However, to perform a re-ordering of writes when utiliz-
ing file groups, the issue of write after write (WAW) data
hazard must be addressed. File groups, expect updates to a
set of independent files to be applied in a specific order. The
issue of write order can be addressed through the inclusion
of an appropriate set of techniques which can re-order the
writes before they are written, e.g., by applying a set of
techniques for memory disambiguation.

For example, writes for files A, B, and C are supposed to
be written into respective slots 1, 2, and 3, within a file group
environment. List reordering program 115 is applied and the
files are thus sent in the order of B, C, and A. If a write were

20

25

30

35

40

45

55

10

to be performed at this point then the files would not be
written into their correct slots. However, through the appli-
cation of techniques for memory disambiguation, the files
can be written in the appropriate slot as they are received. In
other words, file B is received first and is written to slot 2,
then file C is received and written to slot 3, finally file A is
received and is written to slot 1.

The exemplary embodiment(s) disclosed are not to be
interpreted as a limitation to only those techniques and
methods utilized by those exemplary embodiment(s). There
are many possible ways in which a pre-fetch list and/or write
list can be re-ordered. In other embodiments, the methods
and techniques used to re-order a pre-fetch list and/or a write
list can vary.

FIG. 5 depicts a block diagram of components of com-
puting device 110 and computing device 120, in accordance
with an illustrative embodiment of the present invention. It
should be appreciated that FIG. 5 provides only an illustra-
tion of one implementation and does not imply any limita-
tions with regard to the environments in which different
embodiments may be implemented. Many modifications to
the depicted environment may be made.

Computing device 110 and computing device 120 include
respective communications fabric 502, which provides com-
munications between computer processor(s) 504, memory
506, persistent storage 508, communications unit 510, and
input/output (I/O) interface(s) 512. Communications fabric
502 can be implemented with any architecture designed for
passing data and/or control information between processors
(such as microprocessors, communications and network
processors, etc.), system memory, peripheral devices, and
any other hardware components within a system. For
example, communications fabric 502 can be implemented
with one or more buses.

Memory 506 and persistent storage 508 are computer-
readable storage media. In this embodiment, memory 506
includes random access memory (RAM) 514 and cache
memory 516. In general, memory 506 can include any
suitable volatile or non-volatile computer-readable storage
media.

List reordering program 115, physical block set generator
116, weighted graph generator 117, original data 118, API
interface 122, initial list 125, and copied data 128 are stored
in persistent storage 508 for execution and/or access by one
or more of the respective computer processors 504 via one
or more memories of memory 506. In this embodiment,
persistent storage 508 includes a magnetic hard disk drive.
Alternatively, or in addition to a magnetic hard disk drive,
persistent storage 508 can include a solid state hard drive, a
semiconductor storage device, read-only memory (ROM),
erasable programmable read-only memory (EPROM), flash
memory, or any other computer-readable storage media that
is capable of storing program instructions or digital infor-
mation.

The media used by persistent storage 508 may also be
removable. For example, a removable hard drive may be
used for persistent storage 508. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer-readable storage medium that is also part of per-
sistent storage 508.

Communications unit 510, in these examples, provides
for communications with other data processing systems or
devices, including resources of computing device 120. In
these examples, communications unit 510 includes one or
more network interface cards. Communications unit 510
may provide communications through the use of either or

US 9,471,582 B2

11

both physical and wireless communications links. List reor-
dering program 115, physical block set generator 116,
weighted graph generator 117, original data 118, API inter-
face 122, initial list 125, and copied data 128 may be
downloaded to persistent storage 508 through communica-
tions unit 510.

1/O interface(s) 512 allows for input and output of data
with other devices that may be connected to computing
device 110. For example, I/O interface 512 may provide a
connection to external devices 518 such as a keyboard,
keypad, a touch screen, and/or some other suitable input
device. External devices 518 can also include portable
computer-readable storage media such as, for example,
thumb drives, portable optical or magnetic disks, and
memory cards. Software and data used to practice embodi-
ments of the present invention, e.g., list reordering program
115, physical block set generator 116, weighted graph gen-
erator 117, original data 118, API interface 122, initial list
125, and copied data 128 can be stored on such portable
computer-readable storage media and can be loaded onto
persistent storage 508 via /O interface(s) 512. /O
interface(s) 512 also connect to a display 520.

Display 520 provides a mechanism to display data to a
user and may be, for example, a computer monitor, or a
television screen.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

What is claimed is:

1. A method of optimizing an order of a pre-fetch list, the
method comprising:

a computer determining a degree of information duplica-
tion between at least two files included in an original
pre-fetch list;

the computer generating a re-ordered pre-fetch list by
re-ordering the files included in the original pre-fetch
list based, at least in part, on the degree of information
duplication between the two files included in the origi-
nal pre-fetch list, wherein the files included in the
original pre-fetch list are re-ordered by grouping files
containing higher degrees of duplicate information
closer together in the re-ordered pre-fetch list;

25

30

40

45

55

12

the computer generating a weighted graph, wherein a
node of the weighted graph is associated with a file
included in the original pre-fetch list;

the computer connecting two or more nodes with a
weighted edge wherein the weighted edge represents
the degree of information duplication between two files
respectively associated with the nodes;

the computer determining a weight for each sub-tree
included in the weighted graph, wherein the weight for
each sub-tree is based, at least in part, on a sum of
weighted edges included in the sub-tree;

the computer generating an ordered sub list of nodes
included in the sub-tree, wherein the ordered sub list of
nodes is based, at least in part on, the weight of at least
one edge associate with a given node; and

the computer generating a new pre-fetch list based, at
least in part, on one or more sub-lists, wherein the
sub-lists are added to the new pre-fetch list based on
their associated sub-tree weights.

2. The method of claim 1, the method further including:

the computer determining a degree of separation between
at least two files included in the original pre-fetch list
that represents a number of files separating two given
files included in the original pre-fetch list; and

the computer generating a re-ordered pre-fetch list by
re-ordering the files included in the original pre-fetch
list based, at least in part, on the degree of separation
between the two files included in the original pre-fetch
list.

3. The method of claim 1, the method further including:

the computer creating a virtual block list for at least one
file included in the original pre-fetch list; and

the computer comparing the virtual block list of two or
more files included in the original pre-fetch list.

4. The method of claim 1, the method further including:

the computer generating a list of unique physical blocks
included in the two or more files included in the
original pre-fetch list.

5. The method of claim 3, the method including:

the computer analyzing the virtual block list to identify
one or more nodes to be included in a weighted graph.

6. A computer program product for optimizing an order of

a pre-fetch list, the computer program product comprising:
one or more computer-readable storage-medium and pro-
gram instructions stored on the one or more computer-
readable storage medium, the program instructions
comprising:
program instructions to determine a degree of informa-
tion duplication between at least two files included in
an original pre-fetch list;
program instructions to generate a re-ordered pre-fetch
list by re-ordering the files included in the original
pre-fetch list based, at least in part, on the degree of
information duplication between the two files
included in the original pre-fetch list, wherein the
files included in the original pre-fetch list are re-
ordered by grouping files containing higher degrees
of duplicate information closer together in the re-
ordered pre-fetch list;
program instructions to generate a weighted graph,
wherein a node of the weighted graph is associated
with a file included in the original pre-fetch list;
program instructions to connect two or more nodes
with a weighted edge wherein the weighted edge
represents the degree of information duplication
between two files respectively associated with the
nodes;

US 9,471,582 B2

13

program instructions to determine a weight for each
sub-tree included in the weighted graph, wherein the
weight for each sub-tree is based, at least in part, on
a sum of weighted edges included in the sub-tree;
program instructions to generate an ordered sub list of
nodes included in the sub-tree, wherein the ordered
sub list of nodes is based, at least in part on, the
weight of at least one edge associate with a given
node; and
program instructions to generate a new pre-fetch list
based, at least in part, on one or more sub-lists,
wherein the sub-lists are added to the new pre-fetch
list based on their associated sub-tree weights.
7. The computer program product of claim 6, the program
instructions further including:
program instructions to determine a degree of separation
between at least two files included in the original
pre-fetch list that represents a number of files separat-
ing two given files included in the original pre-fetch
list; and
program instructions to generate a re-ordered pre-fetch
list by re-ordering the files included in the original
pre-fetch list based, at least in part, on the degree of
separation between the two files included in the original
pre-fetch list.
8. The computer program product of claim 6, the program
instructions further including:
program instructions to create a virtual block list for at
least one file included in the original pre-fetch list; and
program instructions to compare the virtual block list of
two or more files included in the original pre-fetch list.
9. The computer program product of claim 6, the program
instructions further including:
program instructions to generate a list of unique physical
blocks included in the two or more files included in the
original pre-fetch list.
10. The computer program product of claim 8, the pro-
gram instructions further including:
program instructions to analyze the virtual block list to
identify one or more nodes to be included in a weighted
graph.
11. A computer system for optimizing an order of a
pre-fetch list, the computer system comprising:
one or more computer processors;
one or more computer readable storage medium;
program instructions stored on the computer readable
storage medium for execution by at least one of the one
or more processors, the program instructions compris-
ing:
program instructions to determine a degree of informa-
tion duplication between at least two files included in
an original pre-fetch list;
program instructions to generate a re-ordered pre-fetch
list by re-ordering the files included in the original
pre-fetch list based, at least in part, on the degree of

15

20

25

30

35

40

45

50

14

information duplication between the two files
included in the original pre-fetch list, wherein the
files included in the original pre-fetch list are re-
ordered by grouping files containing higher degrees
of duplicate information closer together in the re-
ordered pre-fetch list;
program instructions to generate a weighted graph,
wherein a node of the weighted graph is associated
with a file included in the original pre-fetch list;
program instructions to connect two or more nodes
with a weighted edge wherein the weighted edge
represents the degree of information duplication
between two files respectively associated with the
nodes;
program instructions to determine a weight for each
sub-tree included in the weighted graph, wherein the
weight for each sub-tree is based, at least in part, on
a sum of weighted edges included in the sub-tree;
program instructions to generate an ordered sub list of
nodes included in the sub-tree, wherein the ordered
sub list of nodes is based, at least in part on, the
weight of at least one edge associate with a given
node; and
program instructions to generate a new pre-fetch list
based, at least in part, on one or more sub-lists,
wherein the sub-lists are added to the new pre-fetch
list based on their associated sub-tree weights.
12. The computer system of claim 11, the program
instructions further including:
program instructions to determine a degree of separation
between at least two files included in the original
pre-tetch list that represents a number of files separat-
ing two given files included in the original pre-fetch
list; and
program instructions to generate a re-ordered pre-fetch
list by re-ordering the files included in the original
pre-fetch list based, at least in part, on the degree of
separation between the two files included in the original
pre-fetch list.
13. The computer system of claim 11, the program
instructions further including:
program instructions to create a virtual block list for at
least one file included in the original pre-fetch list;
program instructions to compare the virtual block list of
two or more files included in the original pre-fetch list,
and
program instructions to generate a list of unique physical
blocks included in the two or more files included in the
original pre-fetch list.
14. The computer system of claim 13, the program
instructions further including:
program instructions to analyze the virtual block list to
identify one or more nodes to be included in a weighted

graph.

